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Abstract. We study the generalization ability of a simple perceptron which learns unlearnable
rules. The rules are presented by a teacher perceptron with a non-monotonic transfer function.
The student is trained in the on-line mode. The asymptotic behaviour of the generalization error
is estimated under various conditions. Several learning strategies are proposed and improved to
obtain the theoretical lower bound of the generalization error.

1. Introduction

One important feature of feed-forward neural networks is their ability to learn a rule from
examples [1-3]. The student network can adopt its synaptic weights following a set of
examples given from the teacher network so that it can make predictions on the output for
an input which has not been shown before. The learning of unlearnable rules by a perceptron
is a particularly interesting issue because the student usually does not know the structure of
the teacher in the real world. For machine learning, it is important to improve the learning
scheme and minimize the prediction error even if it is impossible to exactly reproduce
the input—output relation of the teacher. Only a few papers have appeared concerning the
learning of unlearnable rules where the teacher and the student have different structures
[4-6].

In this paper we study the generalization ability of a simple perceptron using the on-line
algorithm from a teacher perceptron with a non-monotonic transfer function of reversed-
wedge type that has been investigated as an associative memory [7-9] and a perceptron
[10,11]. If a simple monotonic perceptron learns a rule from examples presented by
a non-monotonic perceptron, the generalization error remains non-vanishing even if an
infinite number of examples are presented by the teacher. We study the limiting value and
asymptotic behaviour of the generalization error in such unlearnable cases.

This paper is organized as follows. In section 2 the problem is formulated and the general
properties of the generalization error are investigated. In section 3 perceptron and Hebbian
learning algorithms in the on-line scheme are investigated. For each learning scheme, we
calculate the asymptotic behaviour of the learning curve. In section 4 we investigate the
effects of output noise on learning processes. In section 5 we introduce the optimal learning
rate and calculate the optimal generalization error. The optimal learning rate obtained in
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section 5 contains an unknown parameter for the student in some contradiction to the idea
of learning because the learning process depends upon the unknown teacher parameter.
Therefore, in section 6 we introduce a learning rate independent of the unknown parameter
and optimize the rate to achieve a faster convergence of the generalization error. In section 7,
we allow the student to ask queries under the Hebbian learning algorithm. It is shown that
learning is accelerated considerably if the learning rate is optimized. In section 8, we
optimize the learning dynamics by a weight-decay term to avoid an over-training problem

in Hebbian learning observed in section 3. Finally, section 9 contains a summary and
discussion.

2. Generic properties of the generalization error

Our problem is defined as follows. The teacher signal is provided by a single-layer
perceptron with av-dimensional weight vectal® and a non-monotonic (reversed-wedge)
transfer function

T,(v) = signv(a — v)(a + v)] (2.1)

wherev = /N (J° - x)/|J°|, x is the input vector normalized to unity, is the width of
the reversed wedge, and sign denotes the sign function. The student is a simple perceptron
with the weight vectorJ whose output is

S(u) = sign(u) (2.2)

whereu = /N (J - z)/|J|. The components af are drawn independently from a uniform
distribution on theV-dimensional unit sphere. The student can learn the rule of the teacher
perfectly if and only ifa = oo.

It is convenient to introduce the following two order parameters. One is the overlap
betweenJ® and J

JO.J

R= —— 2.3

| Tl (@3)

and the other is the norm of the student weight vector
|J]
= —. 2.4
NG @4
In the limit N — oo the random variables andv obey the normal distribution
1 u? +v? — ZRMU]
Pr(u,v) = exp| — 2.5
R0 = V= R? p[ 2(1- R?) (2:9)

The generalization erray, or the student probability of producing a wrong answer, can be
obtained by integrating the above distribution over the region satisfijjiig)#S () in the
two-dimensionalki—v space. After simple calculations we find

o —Rv ¢ Rv
=ER) =2 DvH| — 2| DvH|— 2.6
om =2 oun () e [fon () o

where H(x) = [ Dv and Dv = dv exp(—v?/2)/+/27.

In figure 1 we plotE (R)(= ¢y) for several values of the parameter From this figure,
we see that fou = oo (the learnable limit),e; goes to zero wherR approaches 1. In
contrast, fora = 0, €5 goes to zero wherR reaches—1. If a is finite, the generalization
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Figure 1. The generalization error as a function of the overRgor a = oo, 2.0, 10, 05,
0. Fora = oo, the generalization error decreases to zeraRagoes to 1. Fom = 0, the
generalization error decays to zero Rgoes to—1 instead of 1.

error shows highly non-trivial behaviour. The critical valRg of the order parameter is
defined as the point wherB(R) is locally minimum. Explicitly,

[2log2— a?

which exists fora < ac; = /2log2 = 1.18. In figure 2 we plot the value of the
global minimum ofE (R), the smallest possible generalization error irrespective of learning
algorithms. In figure 3, we show the value &f which gives the global minimum. We
notice that fora < ac; = 0.80, Ejoca = E(R = R,) is also the global minimum, and for

a > acy, the global minimum isE(R = 1). Clearly the optimal generalization error is
obtained by training the student weight vectbrso thatR goes to 1 (or.J = J°). This
critical valueac; is given by the conditiorE (R = 1) = Ejgcal-

On the other hand, far < acy, the optimal generalization cannot be achieved even if the
student succeeds in findin® completely. In this curious case, the optimal generalization
is obtained by training the student so that the student finds his weight vector which satisfies
R = R, instead ofR = 1. At a = ac, the generalization error has the maximum value as
seen in figure 2.

3. Dynamics of noiseless learning

We now investigate the learning dynamics with specific learning rules.
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Figure 2. The global minimum value of(R) which corresponds to the optimal value of the
generalization errogqp. We also plot the generalization error obtained by perceptron learning
with a learning rate off = 1. Whena = ac1, the generalization error under the perceptron

algorithm becomes equal to a random guggs= 0.5).

R
1 ~—'—."
e Optimal learning ——
d Perceptron learning -+~
.l',
4
0.5+ I
I
.I
i
4
4
K
g
O R Rty fi d ettt
i
g
g
4
g
-0.5+ J
i
g
4
s
!
7
L . , : I
0 1 l 2 1A ] 1
dcp Adcy a

Figure 3. The optimal order parameté& which gives the global minimum, namely, the optimal
generalization erroeop. The system shows a discontinuous phase transition=atc2 = 0.80
from the phase described /= 1 to the phase described By= R,. We also plotR = 1—-2A
obtained by perceptron learning with a learning rategot 1. Whena = aci, the overlap
between the teacher and student vanishes.
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3.1. Perceptron learning

We first investigate the perceptron learning
I =" — O(=T,(v)Sw)) signu) 3.1)

where ® is the step function and: stands for the discrete time step of dynamics or the
number of presented examples. The standard procedure (see for example [12]) yields the
rate of changes df and R in the limit N — oo as

d 1[E®R)
o= [2 - F(R)l:| (3.2)
dR 1 R
=7 [—ZE(R) + (F(R)R — G(R)) l] (3.3)

where E(R) = (1)g, F(R) = (usignu))gr and G(R) = (vsignu))g. The bracketg---)x
stand for averaging with respect to the distributiBgp(x, v), the integration being carried
out over the region where the student and the teacher give different oUtguis# S(u).
Hence the definition o (R) coincides with that of the generalization errd(R) = ¢,
as used in the previous section. The other quantifiéR) and G(R) are evaluated in a
straightforward manner as

FR) = — 8 1—2a)4+ — (3.4)
N V2 V2 .
1 R
G(R)=——(1-2A - 3.5
(R) JE( H\/E (3.5)
whereA = e=¢°/2,

3.1.1. Numerical analysis of differential equationdVe have numerically solved equations
(3.2) and (3.3). The resulting flows dt and! are shown in figure 4 fon = oo under
several initial conditions. This figure indicates thRtreaches 1 (perfect generalization
state) in the limit ofa—o0 and/— oo for any initial condition. For finitex, however,
the behaviour of the flow strongly depends on the initial condition. If we take a laage
the initial value, the perfect generalization stéfe = 1) is achieved aftel decreases at
intermediate steps. If we choose initiglclose to 1 and small, the perfect generalization
is achieved after a decrease®fis observed. Similar phenomena have been reported in the
K = 2 parity machine [12]. Next we display the flows &fand!/ for unlearnable cases,
for examplea = 2.0 in figure 5. There exists a stable amdlependent fixed pointRo, lo).
The generalization of the student halts at this fixed point even if the flow ahd! starts
from R =1 and largd.

3.1.2. Asymptotic analysis of the learning curv&Vhen the rule is learnable & c0), it is
straightforward to check the asymptotic behavieyle= ka3, k = +/2(3v/2)7Y/3/x, from
equations (3.2) and (3.3). Whenis finite, the fixed point value oR is obtained from
equations (3.2)—(3.5) aBy = 1 — 2A. SubstitutingRy into E(R), we get the minimum
value of the generalization errafy = emin(a) for perceptron learning. In figures 2
and 3, we showRy and Ey as functions ofa. Figure 2 indicates that the learning for
a = acy = /210g2, which is obtained from the conditioRy, = 0, is equivalent to a
random guesSsmin(ac1) = 0.5.

Linearization of the right-hand side of equations (3.2) and (3.3) around the fixed point
yields the behaviour of the generalization error near the fixed point. Explicit expressions
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Figure 4. The flows of the order parametes and ! for the learnable caséz = oo) by
perceptron learning. If one starts from largehe student begins to generalize after the length
of the weight vectol decreases to some value.

Figure 5. The flows of the order parametes and! for the unlearnable cases= 2.0 by
perceptron learning. The flows are attracted to a fixed point.
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simplify when a is large: it turns out that the generalization error decays toward the
minimum value

E(R) ~ 2H (a) ~ %r (i) AY4 (3.6)

exponentially ag+/2/m) exp(—2A%3« /7).

3.2. Hebbian learning
In the Hebbian rule the dynamics of the student weight vector is
JH =g 4 T,(v)x. (3.7)

This recursion relation of th&/-dimensional vectod is reduced to the evolution equations
of the order parameters as

d 1[1 2R

=1 [2 + 727{(1— 2A)l} (3.8)
dR _1[ R 2 )

=7 [_2 + (1-2A)1—-R )z} . (3.9)

3.2.1. Numerical analysis of differential equationsn figure 6, we plot the flows in the
R plane and the generalization error o= oo, 2.0 anda = 0.5. We started the dynamics
with the initial condition(Rinit, linit) = (0.01, 0.1). This figure shows thak reaches 1 for

-0.4-

v
—h

Figure 6. The flows of R and! for a = o0, 2.0, 0.5 by Hebbian learning. For the cases of
a = oo and 20, R reaches 1 and goes toco. On the other hand, far = 0.5, R reaches-1
as! goes toco.
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Figure 7. The generalization errogg for a = oo, 2.0 and 05 by the Hebbian learning. For

a = oo and 20, the generalization error converges to the optimal valdés3. However, in the

case ofa = 0.5, the generalization error begins to increase when the student learns too much
(over-training).

largea and R approaches-1 for smalla. In order to find this bifurcation point ned = 0,
we approximate equation (3.9) arouRd~ O as

dR 2
da /271

If a > acx = /2log2 = 1.18, the derivative #/da is positive, and consequentli
increases and eventually reaches 1 in the limmitoo. If a < ac1, R reaches-1 asa— oo.
Figure 7 shows how the generalization error behaves according kora = 0.5(< ac1),
€4 has a minimum at some intermediate When the generalization erreg passes through
this value ey begins to increase towards the limiting vakg(a) = 1—2H (a). Therefore,
if the student learns excessively, he cannot achieve the lowest generalization error located
at the global minimum of£ (R) = ¢4 (over-training) [3, 13].

From figure 1 we see tha® must pass through a local minimum &fR) at R = R,
in order to go to the stat® = —1. If the parameten satisfiesa < ac, = 0.80, this local
minimum is also the global minimum. Therefore,dif< ac;, although the generalization
error decreases untit reachesr,, it begins to increase as soon Bspasses through the
minimum pointR = R, and finally reaches a larger value Rt= —1.

When the parameter lies in the rangeic; < a < ac1, the global minimum is located at
R = 1. However, sinceR goes to—1 for a < ac1 (see equation (3.10)), the generalization
error increases monotonically from50 (random guess) to + 2H (a)(> 0.5) for the
parameter rangec; < a < ac;. We can regard this as a special case of over-training.
We conclude that over-training appears forak ac;.

(1-2A). (3.10)
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3.2.2. Asymptotic analysis of the learning curv®y using the same technique as in the
previous section, we obtain the asymptotic form of the generalization error wheno in
the limit «—o0 as

11

B V27 Ja

which is a well known result [14].
For finite ¢ satisfyinga > aci, simple manipulations, as before, show that the stable

fixed point is atR = 1 and the differential equations (3.8) and (3.9) yield the asymptotic
form of the generalization error as

1 1
=——————— +2H(a). 3.12
€g S (l—20) Ja + 2H (a) (3.12)

The limiting value X (a) is the best possible value obtained in section 2. On the other
hand, fora < a1,

¢ (3.11)

1 1
€= ———————+1—2H(a). 3.13
97 Jer(1—2A) Ja ( (3.13)
The rate of approach to the asymptotic valug,/&, in equations (3.12) and (3.13) agrees
with the corresponding behaviour in the Gibbs learning of unlearnable rules [4].

4. Learning under output noise in the teacher signal

We now consider the situation where the output of the teacher is inverted randomly with a
rate A(<3) for each example.

We show that the parameter plays essentially the same role as output noise in the
teacher signal.

4.1. Perceptron learning

According to [12, 15, 16], the effect of output noise is taken into account in the differential
equations (3.2) and (3.3) by replacifigR), F(R) andG (R) with E; (R), F;(R) andG; (R)
as follows

E;(R) = (1—A)E(R) + LE°(R)

F(R) = (1= M) F(R) + AF¢(R) 4.1)

G, (R) = (1— A)G(R) + AG“(R).

Where E¢, F¢ and G¢ correspond toE, F and G, the only difference being that the
integration is over the region satisfyirig (v) = S(u).

We study the asymptotic behaviour of the learning curve in the limit of the small noise
level A«1. For the learnable case= oo, equations (3.2) and (3.3) with (4.1) taken into
account have the fixed point & = Ry = 1 — 21, 1 = lp = (2V/2rr)~! for A « 1.

Linearization around this fixed point leads to the asymptotic behaviour
[~ o[l + O &

ol ( )] . 4.2)

1-R~(1-Ro[l+0E% ™).

Therefore, the generalization errg converges to a finite valuB(R = 1—2) = 212/
exponentially, exp—81%2a).
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According to Biehlet al [16], it is useful to distinguish two performance measures of
on-line learning, the generalization errgy and the prediction erras,. The generalization
error ¢4 is the probability for disagreement between the student and the genuine rule of the
teacher as we have discussed. On the other hand, the predictior gisahe probability
for disagreement between the student and the noisy teacher output for an arbitrary input. In
the present case, the prediction eregrand generalization erraiy satisfy the relation

For the unlearnable case of large but firitender the small noise level, the fixed point
value of R is found to beRo(A) = (1 — 2A)(1 — 24). The expression of the fixed point
lo(A) is too complicated and is omitted here. Linearization near this fixed point shows that
the generalization error converges @yn)AY2 4+ 2H (a) exponentially as exp-r_a) for
largea and smallx, where

(=82 2 — [ (—8)32 + 201/2)2 — (BA + 4A1A2)
= 3 .
The prediction error is given by, = A + (1 — 2))e.

r_

(4.4)

4.2. Hebbian learning

The differential equations of the order parameters for noisy Hebbian learning are

d 1[1 2R

=7 [2 + 7271(1— 2A)(1 — 2k)l:| (4.5)
dR 1 R 2 5

w 7 [—2 + —zﬂ(l— 2A)(1—20)(1—R )z} . (4.6)

In figure 8, we plot the generalization error foe= 0.5 by solving these differential equations
numerically. We saw in the previous that the over-training appears in the absence of noise
if a < acy = +/2l0g 2, which is also the case when there is small noise ¢e-g.0.01). For
larger i (e.g.A = 0.20), however, no minimum iy appears a& increases. This implies
in terms of figure 1 thak becomes stuck at an intermediatebefore it reache®,.

The asymptotic form for the noisy case can be derived simply by replating?A) in
the asymptotic form of the noiseless case with- 2A)(1 — 21). ThusA = —a*/2 and A
have the same effect on the asymptotic generalization ability. A similar effect is reported
for the non-monotonic Hopfield model [8, 9] which works as an associative memory. If we
embed patterns by the Hebb rule in the network, the capacity of the network drastically
deteriorates for smali.

5. Optimization of the learning rate

So far we have investigated the learning processes with a fixed learning rate. In this section
we consider optimization of the learning rate to improve the learning performance. It turns
out that perceptron learning with the optimized learning rate achieves the best possible
generalization error in the range> ac;.

We first introduce the learning ragga) in our dynamics. As an example, the learning
dynamics for the perceptron algorithm is written as

J = J" — g(@)O (=T, (v)S(w)) Sign(u)z. (5.1)
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Figure 8. The generalization error for the unlearnable case 0.5 with output noise. = 0.01,
0.20 by Hebbian learning.

This optimization procedure is different from the technique of Kinouchi and Caticha [17].
They investigated the on-line dynamics with a general weight funcii@h, (v), «) as
I = I+ f(T,0), 0Tz (5.2)

and chosef(T,, u) so that it maximizes the increase &fper learning step. In contrast,
our optimization procedure adjusts the parametér) keeping the learning algorithm
unchanged.

5.1. Perceptron learning

5.1.1. Trajectory in theR— plane. The trajectories in theR—{ plane can be derived
explicitly for the optimal learning ratgopi(e). The differential equations with the learning
rate g(«) are

d  g@?ER)/2—g@)F(R)

do ] (5.3)
dR —RE(R)g(a)2/2+g(a)[F(R)R - G(R)]I
= - = L(g(a)). (5.4)

Now we choose the parametgto maximizeL (g(«)) with the aim to accelerate the increase
of R
[F(R)R — G(R)]I

goptla) = RE(R) (5.5)
Substitutingg into equations (5.3) and (5.4) and taking their ratio, we find
dr F(R)R — G(R)]R
_ [F(R) G(R)] (5.6)

d ~ [F(RR+G®R]I’
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Using equations (3.4) and (3.5) we obtain the trajectory inRk&plane as
(14 R~ /AL - RYAAR = ¢] (5.7)

whereA = 1 — 2A andc is a constant.

In figures 9 and 10, we plot the above trajectory doe= 2.0 and 05, respectively, by
adjustingc to reproduce the initial condition&Rinit, linit) = (0.01, 0.10), (0.01, 1.00) and
(0.01, 2.00). These figures indicate that the student goes to the stake-ofl after infinite
learning stepga—o00) for any initial condition. The final value of depends om:. If a
is small (e.g. 0.5)] increases indefinitely as — oc. On the other hand, for larger, [ is
seen to decrease asgoes toco. We investigate thig-dependence af in more detail in
the next section.

We plot the corresponding generalization error in figures 11 and 12. We see that for
a = 2.0, the generalization ability is improved significantly. However, o= 0.5, the
generalization ability becomes worse than thatdee 1 (the unoptimized case).

We note that the above optimal learning ragg:(e) contains the parameterunknown
to the student. Thus this choice gf«) is not perfectly consistent with the principles of
supervised learning. We will propose an improvement on this point in section 6 using a
parameter-free learning rate. For the moment, we may take the result of the present section
as a theoretical estimate of the best possible optimization result.

5.1.2. Asymptotic analysis of the learning curvé.et us first investigate the learnable case.
The asymptotic forms oR, I/, ¢; andg as R — 1 are obtained from the same analysis as

Figure 9. The trajectories in th&— plane with the optimal learning rate by perceptron learning
for a = 2.0. We choose the initial condition aRinit, linit) = (0.01, 0.10), (0.01, 1.00) and
(0.01, 2.00).
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Figure 10. Same as in figure 12 with = 0.5.
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Figure 11. The generalization error far = 2.0 with the optimal learning ratgopt.
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Figure 12. Same as in figure 14 with = 0.5. If we select a negative value as the initial
condition of R for a = 0.5, the generalization error converges te- 2H (a)(> 0.5).

in the previous section a8 = 1 — 8/a?, | = ce~1* and

=+ (5.8)

To
l
gla) =2v2n— = 2¢V2r
o o

wherec is a constant depending on the initial condition. The decay rate of the vanishing
generalization error is improved from Y3 for the unoptimized case [15] te~1. This
o~ t-law is the same as in off-line (or batch) learning [18]. We also seelthpproaches
asR reaches 1.
We next investigate the unlearnable casg0. The asymptotic forms are

2rH(a) 1

(1-2A)2a (5.10)
| = cq—28/1-28)

_V22rH@) 1

and the optimal learning raig,: is

\/Z q—28/1-21)
“1-2a a '
From the asymptotic form af, we find that!/ diverges witha for a < a¢; = \/W and

goes to zero fou > ac; as observed in the previous section. It is interesting thatafor
exactly equal taic1, gopt Vanishes and the present type of optimization does not make sense.

e—lG/otz

(5.9)

R=1-

Sopt(a) = (5.12)
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Fora > ac; = 0.80, the generalization error converges to the optimal valdés2 as
a~12. This is the same exponent as that of Hebbian learning as we saw in the previous
section. Fom < acp, in order to get the optimal overlaR = R,, we must stop the on-line
dynamics before the system reaches the sRate —1. Accordingly, the method discussed
in this section is not useful for the purpose of improvement of generalization ability for
a < dgp.

5.2. Hebbian learning
Hebbian learning with learning ratg«) is
J" = J" 4 g() T, (). (5.13)

Using the same technique as in the previous section, we find the optimal learning rate for
the Hebbian learningg,(«) as

2 (1—2A)(1— R?I
H
Gopt(@) =4/ - R : (5.14)
The R trajectory is
R

wherec is a constant determined by the initial condition. It is very interesting that this
trajectory is independent of.
The asymptotic forms of various quantities tor- ac; of the Hebbian learning are

R—1- ~* 1
41 —-2A)% « (5.16)
l=ca
and
1 1
€g = mﬁ + 2H (a) (5.17)
gla) =c. (5.18)

Accordingly, fora > a¢;, the asymptotic form of the generalization error is the same as for
g = 1. However, in the parameter regian< ac1, the generalization ability deteriorates by
introducing the optimal learning rate if we select an initial condition satisfytng 0. To

see this, we note thatRydx is approximated aroun& = 0 as &R /da ~ 2(1 — 2A)?/n R

by usinggg'pt. Therefore, if we start the learning dynamics frdtn> 0, the overlapR goes

to 1 and the generalization error approach&5@ which is not acceptable at all because
it exceeds 0.5. On the other hand, for< ac; and Rjni < 0, the generalization error
approaches 1 2H (a) (less than 0.5 but not optimal) as

1 1
€gg=——————=+1-2H(a). 5.19
87 V2r(1—2A) Va (5.19)
Thus an over-training appears. We must notice that the prefactor of the generalization error
changes from A6 in equation (3.13) to Av/2x in equation (5.19) by introducing the
optimal learning rate. Therefore the optimization, by using the learninggr@aty is not
very useful for Hebbian learning.
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6. Optimal learning without unknown parameters

As we mentioned in section 5, the generalization error obtained there is the theoretical
(not practical) lower bound because the optimal learning gatecontains a parameter
unknown to the student. In this section we propose a method to avoid this difficulty for the
perceptron learning algorithm.

For the learnable case we choose the learninggats

k
g= 1 (6.1)

which is nothing but the asymptotic form (5.9) of the previous optimized learning rate.
Substituting this into equation (5.4) with (5.5), we filRd= 1 — 8/a? whenR is close to
unity and correspondingly

4

Gg - — (6.2)

T

which agrees with the result of Barket al [15].
For the unlearnable case, we assue) = k//« as before and find the general solution

forR=1-¢ as

2 bk
ok H(a)1+A<k)

(6.3)

T hk—1a o

whereb = /2/m(1—2A). The first term dominates asymptoticallybif > 1. In this case,

we have
2k2H(@a) 1
=2H _— 6.4
‘9 (“)+\/ bk—1 na 6.4)

The second term on the right-hand side is minimized by choosing

Var

- (6.5)

which satisfieshk > 1 as required. Equation (6.4) makes senseAor 2,/log?2 if k is
chosen as above.
Whenbk < 1, the asymptotic form of the generalization error is

bk/2
€g = 2H (a) + J? (JE) . (6.6)

o

This formula is valid forb > 0 or a < ac;. A similar crossover between two types of
asymptotic forms was reported in the problem of one-dimensional decision boundary [19].

7. Hebbian learning with queries

We have assumed so far that the student is trained using examples drawn from a uniform
distribution on theN-dimensional spherg”. It is known for the learnable case [20] that
selecting training examples out of a limited set sometimes improves the performance of
learning. We therefore investigate in the present section how the method of Kinzel and
Rujan [20] works for an unlearnable rule.
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7.1. Learning with queries under a fixed learning rate

The learning dynamics we choose here is nothing but the Hebbian algorithm (3.7). In
section 3, the student was trained by inpatainiform on SV. In the present section we
follow [20] and use selected inputs which lie on the borderlife,z = 0 oru = 0, at
every dynamical step. The idea behind this choice is that the student is not confident for
inputs just on the decision boundary and thus teacher signals for such examples should be
more useful than generic inputs.

We use the following conditional distribution, instead Bf(u, v) in equation (2.5), in
order to get the differential equations

Pr(v|lu = 0) = v278(u) Pr(u, v). (7.2)
Using this distribution, we obtain the following differential equations

dr?

— =1 7.2

& (7.2)

drR 1| /2 a? R
dazl[\/;\/1—R2{1—2exp(—2(1_Rz)>}—ZZ] (7.3)

In figure 13, we plot the generalization error for= 1.0 by numerical integration of the
above differential equations. We see that the generalization ability of student is improved
and the problem of over-training is avoided.

In order to investigate the asymptotic form of the generalization error, we solve the
differential equations in the limit of— oco. Equation (7.2) can be solved easilylas /a.

€g
0.5
Non-query =
Query ----
0.49+
0.48~
0.47 T T T
0 10 20 30 40

Figure 13. The generalization error of Hebbian learning with queriesifer 1.0. Over-training
disappears and the generalization error converges to its optimal value.
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For the learnable case—oo, usingR = 1 — ¢ ande—0, we obtaine = 7 /(16x) and the
generalization error as

1 1
€= —/— ——.
87 2y2r Vo
The numerical prefactor from equation (3.11) has been reduced by a half.
For finite a, equation (7.3) has fixed points &y = +1 and

2log2—a?
RF =4 (27927 7.5
! \ 2log2 (7.5)

The latter fixed point exists only far < acy = /2log 2. Thus, ifa > ac1, |R| eventually
approaches 1, and the exponential term in equation (7.3) can be neglected. This implies that
the asymptotic analysis for the learnable case applies without modification. The resulting
asymptotic form of the generalization error is

1 1
€q = —— + 2H(a). 7.6
If a < acy, the system is attracted to the fixed poRif) according to the expansion on
the right-hand side of equation (7.3) arouRd= 0,

drR 1\/7(1 —2A) (7.7)
do IV

which is negative ifa < ac. It is remarkable thaR|™ coincides withR, which gives
the global minimum ofE(R) for a < ac; = 0.80. Therefore, fora < acy, the present
Hebbian learning with queries achieves the best possible generalization error. In the range
a2 < a < ag, R = R{” = R, is not the global minimum of£(R) but is only a local
minimum. However, as seen in figure 13, over-training has disappeared in this region by
introducing queries.

The asymptotic behaviour far < ac; is found to be

16log2/2log2— a? 1 8log 2
€g = €opt— —9 > ge—a [1—Q<2,2|ogz>]exp[—\/;Cl,/zlogz—aw&}

(7.8)

whereQ(x, y) is the incomplete gamma function and the asymptotic valge= E(R,) is
optimal fora < ac;.

(7.4)

7.2. Optimized Hebbian learning with queries

Next we introduce the parametgrinto the Hebbian learning with queries and optimjze

so thatR goes to 1 as quickly as possible. As discussed in section 5, this strategy works
only for a > ac, sinceR = 1 is not the optimal value i# < ac,. Using the same technique

as in section 5, we find the optimal learning rate as

2
Sopt = ;E\/l—Rz{l—Zexp<—lil>}. (7.9)

R2
For the learnable case, the solution ®iis

R =\/1—cexp<—ia> (7.10)
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wherec is a constant. The generalization error decays to zero as

= %E exp(—%) (7.11)

wherec is determined by the initial condition. This exponential decrease for the learnable
case is in agreement with [17] where the optimization of the type of equation (5.2) was used
together with queries. The asymptotic forms of the order parameted optimal learning

rate gopt are
2
l:c’\/l—cexp<—a) (7.12)
T

2
gopt(@) = c/\/f exp(—%) (7.13)

wherec’ is determined by the initial condition.
Next we investigate the case of finitle Using the same asymptotic analysis as in the
learnable case, we obtain the asymptotic form of the generalizationegresr

g =2H(a) + % exp(—%) . (7.14)

The limiting value H (a) is the theoretical lower bound fer > a¢; = 0.80. We therefore
have found a method of optimization to achieve the best possible generalization error with a
very fast, exponential, asymptotic approachdos ac,. The present method of optimization
does not work appropriately far < ac, becauseR = 1, to which the present method is
designed to force the system, is not the best valug of this range ofa.

It is worth investigating whether the exponent of decay changes or not by using a
parameter-free optimal learning rate as in section 7.a & ac;, only one fixed point
R = 1 exists. Therefore, the-dependent term exp-a?/(1 — R?)) in equation (7.9) does
not affect the asymptotic analysis. We may therefore conclude that the asymptotic form of
generalization error does not change by optimal learning rate without the unknown parameter
a.

8. Avoiding over-training by a weight-decay term

In section 3 we showed that over-training appears for the unlearnable:casg; by the
Hebbian learning. Iz < ac;, the flow of R goes to—1 for any initial condition passing
through the local minimum oE(R) at R = R,. Consequently, the generalization ability
of the student decreases as he learns excessively. In order to avoid this difficulty, we must
stop the dynamics on the way to the std#e= —1. For this purpose, we may use the
on-line dynamics with a weight-decay term or a forgetting term [13].

The on-line dynamics by the Hebbian rule is modified with the weight-decay term as

Jmt = (1 — ]Z\\,) J" 4+ T,(v)x. (8.1)

The fixed point of the above dynamics is
2(1-2A)

Ro = )
° VA +4(1—2A)2

(8.2)
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€g
05
A=) —
A=A gy =mem
0.4~
0.3-
02 : , :
0 10 20 30 40

a

Figure 14. The generalization error of Hebbian learning with a weight-decay term for0.5.
Over-training disappears and the generalization error converges to its optimal value.

In order to get the optimal value, we chooBg so that it agrees witlR, which gives
the global minimum ofE (R) for a < ac;. From this condition, we obtain the optimal
as

4a?(1 — 2A)2
" n(2log2—a?)’

Using this Aoy, We solve the differential equations numerically and plot the result in
figure 14 fora = 0.5(< ac1). We see that the over-training disappears and the generalization
error converges to the optimal value.

We next investigate how fast this convergence is achieved. For this purpose, we linearize
the differential equations around the fixed point to obtain

2log2—a® +4

1-R~(1-Ropl1 —2a2(1— 2072 (™ . 8.4

(- ko {1+ 0| exp( 2@ - 202 (TEZVE O (8.4)
Here we warn that\qy in equation (8.3) depends anwhich is unknown to the student.

Therefore, the result obtained in this section gives the theoretical upper bound of the
generalization ability.

Aopt (8.3)

9. Summary and discussion

We have analysed the problem of on-line learning by the perceptron and Hebbian algorithms.
For the unlearnable case, the generalization error decays exponentially to a finite value
E(Rp) with Ry = 1 — 2A in the case of perceptron learning. For the Hebbian learning, the
generalization error decays td2a), the best possible value, far> a¢; and to 1- 2H (a)

for a < acy, both proportionally too=/2. In this latter parameter regiom < ac1, we
observed the phenomenon of over-training.
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We also investigated the learning under output noise. For the learnable case of the
perceptron algorithm, the order parameté&sand ! are attracted towards a fixed point
(Ro, lp) asymptotically with an exponential law. As a result, the generalization error decays
to a finite value exponentially. On the other hand, for the unlearnable case of perceptron
learning, the generalization error decays exponentially to a finite \lEa{(e— 2A)(1—21)).

For the Hebbian learning, the generalization error decayst@: in proportion to ¥/«
for a > ac; and to 1— 2H (a) also in proportion to L/« for a < ac;.

We introduced the learning ratge) in on-line dynamics and optimized it to maximize
dR/dx. Using this treatment we obtained a closed form trajectoryRoéind /. The
generalization ability of the student has been shown to increase ferac, = 0.80 in
the case of the perceptron learning algorithm. For the unlearnable case, the generalization
error decays to the best possible valu&(2) in proportion to ¥./«. For Hebbian learning,
the asymptotic generalization ability did not change by this optimization procedure.

Unfortunately, in the parameter range< ac;, we found it impossible to obtain an
optimal performance for the perceptron learning within our procedure of optimization. To
overcome this difficulty, we investigated the on-line dynamics with a weight-decay term
for the Hebbian learning. Using this method, we could eliminate the over-training, and the
generalization error converged to the optimal value exponentially.

We also introduced a new learning rate independent of the unknown parameter
We assumed (o) = kl/a and optimizedk so that the generalization error decays to the
minimum value as quickly as possible. As a result, for the unlearnable case of; the
prefactor was somewhat improved although the exponent of decay did not change.

The Hebbian learning with queries was also investigated. If the student is trained by
the Hebbian algorithm using inputs on the decision boundary, his generalization ability is
improved except in the rang&, < a < ac;. This is a highly non-trivial result because
this choice of query works well for the unlearnable case where the student does not know
the structure of the teacher. We next introduced the optimal learning rate in the on-line
Hebbian learning with queries and obtained a very fast convergence of the generalization
error. Fora > ac, the generalization error converges to its optimal value exponentially.

We have observed exponential decays to limiting values in various situations of
unlearnable rules. This fast convergence may originate in the large size of asymptotic
space; if the limiting value oR is unity, only a single point in the/-space,J = J, is
the correct destination of learning dynamics, a very difficult task. If, on the other #and,
approache®y(< 1), there are a continuous number of allowed student vectors, and to find
one of these should be a relatively easy process, leading to exponential convergence.
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