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Abstract. We study the generalization ability of a simple perceptron which learns unlearnable
rules. The rules are presented by a teacher perceptron with a non-monotonic transfer function.
The student is trained in the on-line mode. The asymptotic behaviour of the generalization error
is estimated under various conditions. Several learning strategies are proposed and improved to
obtain the theoretical lower bound of the generalization error.

1. Introduction

One important feature of feed-forward neural networks is their ability to learn a rule from
examples [1–3]. The student network can adopt its synaptic weights following a set of
examples given from the teacher network so that it can make predictions on the output for
an input which has not been shown before. The learning of unlearnable rules by a perceptron
is a particularly interesting issue because the student usually does not know the structure of
the teacher in the real world. For machine learning, it is important to improve the learning
scheme and minimize the prediction error even if it is impossible to exactly reproduce
the input–output relation of the teacher. Only a few papers have appeared concerning the
learning of unlearnable rules where the teacher and the student have different structures
[4–6].

In this paper we study the generalization ability of a simple perceptron using the on-line
algorithm from a teacher perceptron with a non-monotonic transfer function of reversed-
wedge type that has been investigated as an associative memory [7–9] and a perceptron
[10, 11]. If a simple monotonic perceptron learns a rule from examples presented by
a non-monotonic perceptron, the generalization error remains non-vanishing even if an
infinite number of examples are presented by the teacher. We study the limiting value and
asymptotic behaviour of the generalization error in such unlearnable cases.

This paper is organized as follows. In section 2 the problem is formulated and the general
properties of the generalization error are investigated. In section 3 perceptron and Hebbian
learning algorithms in the on-line scheme are investigated. For each learning scheme, we
calculate the asymptotic behaviour of the learning curve. In section 4 we investigate the
effects of output noise on learning processes. In section 5 we introduce the optimal learning
rate and calculate the optimal generalization error. The optimal learning rate obtained in
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section 5 contains an unknown parameter for the student in some contradiction to the idea
of learning because the learning process depends upon the unknown teacher parameter.
Therefore, in section 6 we introduce a learning rate independent of the unknown parameter
and optimize the rate to achieve a faster convergence of the generalization error. In section 7,
we allow the student to ask queries under the Hebbian learning algorithm. It is shown that
learning is accelerated considerably if the learning rate is optimized. In section 8, we
optimize the learning dynamics by a weight-decay term to avoid an over-training problem
in Hebbian learning observed in section 3. Finally, section 9 contains a summary and
discussion.

2. Generic properties of the generalization error

Our problem is defined as follows. The teacher signal is provided by a single-layer
perceptron with anN -dimensional weight vectorJ0 and a non-monotonic (reversed-wedge)
transfer function

Ta(v) = sign[v(a − v)(a + v)] (2.1)

wherev ≡ √N(J0 · x)/|J0|, x is the input vector normalized to unity,a is the width of
the reversed wedge, and sign denotes the sign function. The student is a simple perceptron
with the weight vectorJ whose output is

S(u) = sign(u) (2.2)

whereu ≡ √N(J ·x)/|J |. The components ofx are drawn independently from a uniform
distribution on theN -dimensional unit sphere. The student can learn the rule of the teacher
perfectly if and only ifa = ∞.

It is convenient to introduce the following two order parameters. One is the overlap
betweenJ0 andJ

R = J0 · J
|J0||J | (2.3)

and the other is the norm of the student weight vector

l = |J |√
N
. (2.4)

In the limit N →∞ the random variablesu andv obey the normal distribution

PR(u, v) = 1

2π
√

1− R2
exp

[
−u

2+ v2− 2Ruv

2(1− R2)

]
. (2.5)

The generalization errorεg, or the student probability of producing a wrong answer, can be
obtained by integrating the above distribution over the region satisfyingTa(v)6=S(u) in the
two-dimensionalu–v space. After simple calculations we find

εg ≡ E(R) = 2
∫ ∞
a

DvH

( −Rv√
1− R2

)
+ 2

∫ a

0
DvH

(
Rv√

1− R2

)
(2.6)

whereH(x) = ∫∞
x

Dv and Dv ≡ dv exp(−v2/2)/
√

2π .
In figure 1 we plotE(R)(= εg) for several values of the parametera. From this figure,

we see that fora = ∞ (the learnable limit),εg goes to zero whenR approaches 1. In
contrast, fora = 0, εg goes to zero whenR reaches−1. If a is finite, the generalization
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Figure 1. The generalization error as a function of the overlapR for a = ∞, 2.0, 1.0, 0.5,
0. For a = ∞, the generalization error decreases to zero asR goes to 1. Fora = 0, the
generalization error decays to zero asR goes to−1 instead of 1.

error shows highly non-trivial behaviour. The critical valueR∗ of the order parameter is
defined as the point whereE(R) is locally minimum. Explicitly,

R∗ = −
√

2 log 2− a2

2 log 2
(2.7)

which exists fora 6 ac1 =
√

2 log 2 = 1.18. In figure 2 we plot the value of the
global minimum ofE(R), the smallest possible generalization error irrespective of learning
algorithms. In figure 3, we show the value ofR which gives the global minimum. We
notice that fora < ac2 ≡ 0.80, Elocal ≡ E(R = R∗) is also the global minimum, and for
a > ac2, the global minimum isE(R = 1). Clearly the optimal generalization error is
obtained by training the student weight vectorJ so thatR goes to 1 (orJ = J0). This
critical valueac2 is given by the conditionE(R = 1) = Elocal.

On the other hand, fora < ac2, the optimal generalization cannot be achieved even if the
student succeeds in findingJ0 completely. In this curious case, the optimal generalization
is obtained by training the student so that the student finds his weight vector which satisfies
R = R∗ instead ofR = 1. At a = ac2 the generalization error has the maximum value as
seen in figure 2.

3. Dynamics of noiseless learning

We now investigate the learning dynamics with specific learning rules.



3798 Jun-ichi Inoue et al

Figure 2. The global minimum value ofE(R) which corresponds to the optimal value of the
generalization errorεopt. We also plot the generalization error obtained by perceptron learning
with a learning rate ofg = 1. Whena = ac1, the generalization error under the perceptron
algorithm becomes equal to a random guess(εg = 0.5).

Figure 3. The optimal order parameterR which gives the global minimum, namely, the optimal
generalization errorεopt. The system shows a discontinuous phase transition ata = ac2 = 0.80
from the phase described byR = 1 to the phase described byR = R∗. We also plotR = 1−21
obtained by perceptron learning with a learning rate ofg = 1. Whena = ac1, the overlap
between the teacher and student vanishes.
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3.1. Perceptron learning

We first investigate the perceptron learning

Jm+1 = Jm −2(−Ta(v)S(u)) sign(u)x (3.1)

where2 is the step function andm stands for the discrete time step of dynamics or the
number of presented examples. The standard procedure (see for example [12]) yields the
rate of changes ofl andR in the limit N →∞ as

dl

dα
= 1

l

[
E(R)

2
− F(R)l

]
(3.2)

dR

dα
= 1

l2

[
−R

2
E(R)+ (F (R)R −G(R)) l

]
(3.3)

whereE(R) = 〈1〉R, F(R) = 〈u sign(u)〉R andG(R) = 〈v sign(u)〉R. The brackets〈· · ·〉R
stand for averaging with respect to the distributionPR(u, v), the integration being carried
out over the region where the student and the teacher give different outputsTa(v) 6= S(u).
Hence the definition ofE(R) coincides with that of the generalization error,E(R) = εg,
as used in the previous section. The other quantitiesF(R) andG(R) are evaluated in a
straightforward manner as

F(R) = − R√
2π
(1− 21)+ 1√

2π
(3.4)

G(R) = − 1√
2π
(1− 21)+ R√

2π
(3.5)

where1 = e−a
2/2.

3.1.1. Numerical analysis of differential equations.We have numerically solved equations
(3.2) and (3.3). The resulting flows ofR and l are shown in figure 4 fora = ∞ under
several initial conditions. This figure indicates thatR reaches 1 (perfect generalization
state) in the limit ofα→∞ and l→∞ for any initial condition. For finiteα, however,
the behaviour of the flow strongly depends on the initial condition. If we take a largel as
the initial value, the perfect generalization state(R = 1) is achieved afterl decreases at
intermediate steps. If we choose initialR close to 1 and smalll, the perfect generalization
is achieved after a decrease ofR is observed. Similar phenomena have been reported in the
K = 2 parity machine [12]. Next we display the flows ofR and l for unlearnable cases,
for example,a = 2.0 in figure 5. There exists a stable anda-dependent fixed point(R0, l0).
The generalization of the student halts at this fixed point even if the flow ofR and l starts
from R = 1 and largel.

3.1.2. Asymptotic analysis of the learning curve.When the rule is learnable (a = ∞), it is
straightforward to check the asymptotic behaviourεg = kα−1/3, k = √2(3

√
2)−1/3/π , from

equations (3.2) and (3.3). Whena is finite, the fixed point value ofR is obtained from
equations (3.2)–(3.5) asR0 = 1− 21. SubstitutingR0 into E(R), we get the minimum
value of the generalization errorE0 = εmin(a) for perceptron learning. In figures 2
and 3, we showR0 and E0 as functions ofa. Figure 2 indicates that the learning for
a = ac1 ≡

√
2 log 2, which is obtained from the conditionR0 = 0, is equivalent to a

random guess,εmin(ac1) = 0.5.
Linearization of the right-hand side of equations (3.2) and (3.3) around the fixed point

yields the behaviour of the generalization error near the fixed point. Explicit expressions
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Figure 4. The flows of the order parametersR and l for the learnable case(a = ∞) by
perceptron learning. If one starts from largel, the student begins to generalize after the length
of the weight vectorl decreases to some value.

Figure 5. The flows of the order parametersR and l for the unlearnable casesa = 2.0 by
perceptron learning. The flows are attracted to a fixed point.
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simplify when a is large: it turns out that the generalization error decays toward the
minimum value

E(R) ' 2H(a) ' 1

π
0

(
1

4

)
13/4 (3.6)

exponentially as(
√

2/π) exp(−212/3α/π).

3.2. Hebbian learning

In the Hebbian rule the dynamics of the student weight vector is

Jm+1 = Jm + Ta(v)x. (3.7)

This recursion relation of theN -dimensional vectorJ is reduced to the evolution equations
of the order parameters as

dl

dα
= 1

l

[
1

2
+ 2R√

2π
(1− 21)l

]
(3.8)

dR

dα
= 1

l2

[
−R

2
+ 2√

2π
(1− 21)(1− R2)l

]
. (3.9)

3.2.1. Numerical analysis of differential equations.In figure 6, we plot the flows in the
R–l plane and the generalization error fora = ∞, 2.0 anda = 0.5. We started the dynamics
with the initial condition(Rinit, linit) = (0.01, 0.1). This figure shows thatR reaches 1 for

Figure 6. The flows ofR and l for a = ∞, 2.0, 0.5 by Hebbian learning. For the cases of
a = ∞ and 2.0, R reaches 1 andl goes to∞. On the other hand, fora = 0.5, R reaches−1
as l goes to∞.
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Figure 7. The generalization errorεg for a = ∞, 2.0 and 0.5 by the Hebbian learning. For
a = ∞ and 2.0, the generalization error converges to the optimal value 2H(a). However, in the
case ofa = 0.5, the generalization error begins to increase when the student learns too much
(over-training).

largea andR approaches−1 for smalla. In order to find this bifurcation point nearR = 0,
we approximate equation (3.9) aroundR ∼ 0 as

dR

dα
' 2√

2πl
(1− 21). (3.10)

If a > ac1 =
√

2 log 2 = 1.18, the derivative dR/dα is positive, and consequentlyR
increases and eventually reaches 1 in the limitα→∞. If a < ac1, R reaches−1 asα→∞.
Figure 7 shows how the generalization error behaves according toa. For a = 0.5(< ac1),
εg has a minimum at some intermediateα. When the generalization errorεg passes through
this value,εg begins to increase towards the limiting valueεmin(a) = 1−2H(a). Therefore,
if the student learns excessively, he cannot achieve the lowest generalization error located
at the global minimum ofE(R) = εg (over-training) [3, 13].

From figure 1 we see thatR must pass through a local minimum ofE(R) at R = R∗
in order to go to the stateR = −1. If the parametera satisfiesa < ac2 = 0.80, this local
minimum is also the global minimum. Therefore, ifa < ac1, although the generalization
error decreases untilR reachesR∗, it begins to increase as soon asR passes through the
minimum pointR = R∗ and finally reaches a larger value atR = −1.

When the parametera lies in the rangeac2 < a < ac1, the global minimum is located at
R = 1. However, sinceR goes to−1 for a < ac1 (see equation (3.10)), the generalization
error increases monotonically from 0.5 (random guess) to 1− 2H(a)(> 0.5) for the
parameter rangeac2 < a < ac1. We can regard this as a special case of over-training.
We conclude that over-training appears for alla < ac1.
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3.2.2. Asymptotic analysis of the learning curve.By using the same technique as in the
previous section, we obtain the asymptotic form of the generalization error whena = ∞ in
the limit α→∞ as

εg = 1√
2π

1√
α

(3.11)

which is a well known result [14].
For finite a satisfyinga > ac1, simple manipulations, as before, show that the stable

fixed point is atR = 1 and the differential equations (3.8) and (3.9) yield the asymptotic
form of the generalization error as

εg = 1√
2π(1− 21)

1√
α
+ 2H(a). (3.12)

The limiting value 2H(a) is the best possible value obtained in section 2. On the other
hand, fora < ac1,

εg = 1√
6π(1− 21)

1√
α
+ 1− 2H(a). (3.13)

The rate of approach to the asymptotic value, 1/
√
α, in equations (3.12) and (3.13) agrees

with the corresponding behaviour in the Gibbs learning of unlearnable rules [4].

4. Learning under output noise in the teacher signal

We now consider the situation where the output of the teacher is inverted randomly with a
rateλ(6 1

2) for each example.
We show that the parametera plays essentially the same role as output noise in the

teacher signal.

4.1. Perceptron learning

According to [12, 15, 16], the effect of output noise is taken into account in the differential
equations (3.2) and (3.3) by replacingE(R), F(R) andG(R) with Ẽλ(R), F̃λ(R) andG̃λ(R)

as follows

Ẽλ(R) = (1− λ)E(R)+ λEc(R)
F̃λ(R) = (1− λ)F (R)+ λF c(R)
G̃λ(R) = (1− λ)G(R)+ λGc(R).

(4.1)

WhereEc, Fc and Gc correspond toE, F and G, the only difference being that the
integration is over the region satisfyingTa(v) = S(u).

We study the asymptotic behaviour of the learning curve in the limit of the small noise
level λ�1. For the learnable casea = ∞, equations (3.2) and (3.3) with (4.1) taken into
account have the fixed point atR = R0 ≡ 1 − 2λ, l = l0 ≡ (2

√
2πλ)−1 for λ � 1.

Linearization around this fixed point leads to the asymptotic behaviour

l ∼ l0[1+O(e−8λ3/2α)]

1− R ∼ (1− R0)[1+O(e−8λ3/2α)].
(4.2)

Therefore, the generalization errorεg converges to a finite valueE(R = 1−2λ) = 2λ1/2/π

exponentially, exp(−8λ3/2α).
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According to Biehlet al [16], it is useful to distinguish two performance measures of
on-line learning, the generalization errorεg and the prediction errorεp. The generalization
error εg is the probability for disagreement between the student and the genuine rule of the
teacher as we have discussed. On the other hand, the prediction errorεp is the probability
for disagreement between the student and the noisy teacher output for an arbitrary input. In
the present case, the prediction errorεp and generalization errorεg satisfy the relation

εp = λ+ (1− 2λ)εg. (4.3)

For the unlearnable case of large but finitea under the small noise level, the fixed point
value ofR is found to beR0(λ) = (1− 21)(1− 2λ). The expression of the fixed point
l0(λ) is too complicated and is omitted here. Linearization near this fixed point shows that
the generalization error converges to(2/π)λ1/2 + 2H(a) exponentially as exp(−t−α) for
largea and smallλ, where

t− = (−8λ3/2− 2λ1/2)−
√
(−8λ3/2+ 2λ1/2)2− (81+ 4λ−112)

2
. (4.4)

The prediction error is given byεp = λ+ (1− 2λ)εg.

4.2. Hebbian learning

The differential equations of the order parameters for noisy Hebbian learning are

dl

dα
= 1

l

[
1

2
+ 2R√

2π
(1− 21)(1− 2λ)l

]
(4.5)

dR

dα
= 1

l2

[
−R

2
+ 2√

2π
(1− 21)(1− 2λ)(1− R2)l

]
. (4.6)

In figure 8, we plot the generalization error fora = 0.5 by solving these differential equations
numerically. We saw in the previous that the over-training appears in the absence of noise
if a < ac1 =

√
2 log 2, which is also the case when there is small noise (e.g.λ = 0.01). For

largerλ (e.g.λ = 0.20), however, no minimum inεg appears asα increases. This implies
in terms of figure 1 thatR becomes stuck at an intermediateR before it reachesR∗.

The asymptotic form for the noisy case can be derived simply by replacing(1−21) in
the asymptotic form of the noiseless case with(1− 21)(1− 2λ). Thus1 = e−a

2/2 andλ
have the same effect on the asymptotic generalization ability. A similar effect is reported
for the non-monotonic Hopfield model [8, 9] which works as an associative memory. If we
embed patterns by the Hebb rule in the network, the capacity of the network drastically
deteriorates for smalla.

5. Optimization of the learning rate

So far we have investigated the learning processes with a fixed learning rate. In this section
we consider optimization of the learning rate to improve the learning performance. It turns
out that perceptron learning with the optimized learning rate achieves the best possible
generalization error in the rangea > ac1.

We first introduce the learning rateg(α) in our dynamics. As an example, the learning
dynamics for the perceptron algorithm is written as

Jm+1 = Jm − g(α)2(−Ta(v)S(u)) sign(u)x. (5.1)
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Figure 8. The generalization error for the unlearnable casea = 0.5 with output noiseλ = 0.01,
0.20 by Hebbian learning.

This optimization procedure is different from the technique of Kinouchi and Caticha [17].
They investigated the on-line dynamics with a general weight functionf (Ta(v), u) as

Jm+1 = Jm + f (Ta(v), u)Ta(v)x (5.2)

and chosef (Ta, u) so that it maximizes the increase ofR per learning step. In contrast,
our optimization procedure adjusts the parameterg(α) keeping the learning algorithm
unchanged.

5.1. Perceptron learning

5.1.1. Trajectory in theR–l plane. The trajectories in theR–l plane can be derived
explicitly for the optimal learning rategopt(α). The differential equations with the learning
rateg(α) are

dl

dα
= g(α)2E(R)/2− g(α)F (R)l

l
(5.3)

dR

dα
= −RE(R)g(α)

2/2+ g(α)[F(R)R −G(R)]l
l2

≡ L(g(α)). (5.4)

Now we choose the parameterg to maximizeL(g(α)) with the aim to accelerate the increase
of R

gopt(α) = [F(R)R −G(R)]l
RE(R)

. (5.5)

Substitutingg into equations (5.3) and (5.4) and taking their ratio, we find

dR

dl
= − [F(R)R −G(R)]R

[F(R)R +G(R)] l . (5.6)
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Using equations (3.4) and (3.5) we obtain the trajectory in theR–l plane as

(1+ R)−(1+A)/A(1− R)(1−A)/AR = cl (5.7)

whereA = 1− 21 andc is a constant.
In figures 9 and 10, we plot the above trajectory fora = 2.0 and 0.5, respectively, by

adjustingc to reproduce the initial conditions(Rinit, linit) = (0.01, 0.10), (0.01, 1.00) and
(0.01, 2.00). These figures indicate that the student goes to the state ofR = 1 after infinite
learning steps(α→∞) for any initial condition. The final value ofl depends ona. If a
is small (e.g. 0.5),l increases indefinitely asα→∞. On the other hand, for largera, l is
seen to decrease asα goes to∞. We investigate thisa-dependence ofl in more detail in
the next section.

We plot the corresponding generalization error in figures 11 and 12. We see that for
a = 2.0, the generalization ability is improved significantly. However, fora = 0.5, the
generalization ability becomes worse than that forg = 1 (the unoptimized case).

We note that the above optimal learning rategopt(α) contains the parametera unknown
to the student. Thus this choice ofg(α) is not perfectly consistent with the principles of
supervised learning. We will propose an improvement on this point in section 6 using a
parameter-free learning rate. For the moment, we may take the result of the present section
as a theoretical estimate of the best possible optimization result.

5.1.2. Asymptotic analysis of the learning curve.Let us first investigate the learnable case.
The asymptotic forms ofR, l, εg andg asR → 1 are obtained from the same analysis as

Figure 9. The trajectories in theR–l plane with the optimal learning rate by perceptron learning
for a = 2.0. We choose the initial condition as(Rinit , linit) = (0.01, 0.10), (0.01, 1.00) and
(0.01, 2.00).
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Figure 10. Same as in figure 12 witha = 0.5.

Figure 11. The generalization error fora = 2.0 with the optimal learning rategopt.
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Figure 12. Same as in figure 14 witha = 0.5. If we select a negative value as the initial
condition ofR for a = 0.5, the generalization error converges to 1− 2H(a)(> 0.5).

in the previous section asR = 1− 8/α2, l = ce−16/α2
and

εg = 4

πα
(5.8)

g(α) = 2
√

2π
l

α
= 2c
√

2π
e−16/α2

α
(5.9)

wherec is a constant depending on the initial condition. The decay rate of the vanishing
generalization error is improved fromα−1/3 for the unoptimized case [15] toα−1. This
α−1-law is the same as in off-line (or batch) learning [18]. We also see thatl approachesc
asR reaches 1.

We next investigate the unlearnable case16=0. The asymptotic forms are

R = 1− 2πH(a)

(1− 21)2
1

α

l = cα−21/(1−21)
(5.10)

εg =
√

2

π

√
2πH(a)

1− 21

1√
α
+ 2H(a) (5.11)

and the optimal learning rategopt is

gopt(α) ' c
√

2π

1− 21

α−21/(1−21)

α
. (5.12)

From the asymptotic form ofl, we find thatl diverges withα for a < ac1 =
√

2 log 2 and
goes to zero fora > ac1 as observed in the previous section. It is interesting that, fora

exactly equal toac1, gopt vanishes and the present type of optimization does not make sense.
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For a > ac2 = 0.80, the generalization error converges to the optimal value 2H(a) as
α−1/2. This is the same exponent as that of Hebbian learning as we saw in the previous
section. Fora < ac2, in order to get the optimal overlapR = R∗, we must stop the on-line
dynamics before the system reaches the stateR = −1. Accordingly, the method discussed
in this section is not useful for the purpose of improvement of generalization ability for
a < ac2.

5.2. Hebbian learning

Hebbian learning with learning rateg(α) is

Jm+1 = Jm + g(α)Ta(v)x. (5.13)

Using the same technique as in the previous section, we find the optimal learning rate for
the Hebbian learninggH

opt(α) as

gH
opt(α) =

√
2

π

(1− 21)(1− R2)l

R
. (5.14)

TheR–l trajectory is

R

(1− R2)
= cl (5.15)

where c is a constant determined by the initial condition. It is very interesting that this
trajectory is independent ofa.

The asymptotic forms of various quantities fora > ac1 of the Hebbian learning are

R = 1− π

4(1− 21)2
1

α

l = cα
(5.16)

and

εg = 1√
2π(1− 21)

1√
α
+ 2H(a) (5.17)

g(α) = c. (5.18)

Accordingly, fora > ac1, the asymptotic form of the generalization error is the same as for
g = 1. However, in the parameter regiona < ac1, the generalization ability deteriorates by
introducing the optimal learning rate if we select an initial condition satisfyingR > 0. To
see this, we note that dR/dα is approximated aroundR = 0 as dR/dα ' 2(1− 21)2/πR
by usinggH

opt. Therefore, if we start the learning dynamics fromR > 0, the overlapR goes
to 1 and the generalization error approaches 2H(a) which is not acceptable at all because
it exceeds 0.5. On the other hand, fora < ac1 and Rinit < 0, the generalization error
approaches 1− 2H(a) (less than 0.5 but not optimal) as

εg = 1√
2π(1− 21)

1√
α
+ 1− 2H(a). (5.19)

Thus an over-training appears. We must notice that the prefactor of the generalization error
changes from 1/

√
6π in equation (3.13) to 1/

√
2π in equation (5.19) by introducing the

optimal learning rate. Therefore the optimization, by using the learning rateg(α), is not
very useful for Hebbian learning.
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6. Optimal learning without unknown parameters

As we mentioned in section 5, the generalization error obtained there is the theoretical
(not practical) lower bound because the optimal learning rategopt contains a parametera
unknown to the student. In this section we propose a method to avoid this difficulty for the
perceptron learning algorithm.

For the learnable case we choose the learning rateg as

g = k

α
l (6.1)

which is nothing but the asymptotic form (5.9) of the previous optimized learning rate.
Substituting this into equation (5.4) with (5.5), we findR = 1− 8/α2 whenR is close to
unity and correspondingly

εg = 4

πα
(6.2)

which agrees with the result of Barkaiet al [15].
For the unlearnable case, we assumeg(α) = kl/α as before and find the general solution

for R = 1− ε as

ε = k2H(a)

bk − 1

1

α
+ A

(
k

α

)bk
(6.3)

whereb ≡ √2/π(1−21). The first term dominates asymptotically ifbk > 1. In this case,
we have

εg = 2H(a)+
√

2k2H(a)

bk − 1

1

π
√
α
. (6.4)

The second term on the right-hand side is minimized by choosing

k =
√

2π

1− 21
(6.5)

which satisfiesbk > 1 as required. Equation (6.4) makes sense for1 > 2
√

log 2 if k is
chosen as above.

Whenbk < 1, the asymptotic form of the generalization error is

εg = 2H(a)+
√

2A

π

(√
2π

α

)bk/2
. (6.6)

This formula is valid forb > 0 or a < ac1. A similar crossover between two types of
asymptotic forms was reported in the problem of one-dimensional decision boundary [19].

7. Hebbian learning with queries

We have assumed so far that the student is trained using examples drawn from a uniform
distribution on theN -dimensional sphereSN . It is known for the learnable case [20] that
selecting training examples out of a limited set sometimes improves the performance of
learning. We therefore investigate in the present section how the method of Kinzel and
Ruján [20] works for an unlearnable rule.
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7.1. Learning with queries under a fixed learning rate

The learning dynamics we choose here is nothing but the Hebbian algorithm (3.7). In
section 3, the student was trained by inputsx uniform on SN . In the present section we
follow [20] and use selected inputs which lie on the borderline,J · x = 0 or u = 0, at
every dynamical step. The idea behind this choice is that the student is not confident for
inputs just on the decision boundary and thus teacher signals for such examples should be
more useful than generic inputs.

We use the following conditional distribution, instead ofPR(u, v) in equation (2.5), in
order to get the differential equations

PR(v|u = 0) =
√

2πδ(u)PR(u, v). (7.1)

Using this distribution, we obtain the following differential equations

dl2

dα
= 1 (7.2)

dR

dα
= 1

l

[√
2

π

√
1− R2

{
1− 2 exp

(
− a2

2(1− R2)

)}
− R

2l

]
. (7.3)

In figure 13, we plot the generalization error fora = 1.0 by numerical integration of the
above differential equations. We see that the generalization ability of student is improved
and the problem of over-training is avoided.

In order to investigate the asymptotic form of the generalization error, we solve the
differential equations in the limit ofα→∞. Equation (7.2) can be solved easily asl = √α.

Figure 13. The generalization error of Hebbian learning with queries fora = 1.0. Over-training
disappears and the generalization error converges to its optimal value.
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For the learnable casea→∞, usingR = 1− ε andε→0, we obtainε = π/(16α) and the
generalization error as

εg = 1

2
√

2π

1√
α
. (7.4)

The numerical prefactor from equation (3.11) has been reduced by a half.
For finite a, equation (7.3) has fixed points atR0 = ±1 and

R
(±)
1 = ±

√
2 log 2− a2

2 log 2
. (7.5)

The latter fixed point exists only fora < ac1 =
√

2 log 2. Thus, ifa > ac1, |R| eventually
approaches 1, and the exponential term in equation (7.3) can be neglected. This implies that
the asymptotic analysis for the learnable case applies without modification. The resulting
asymptotic form of the generalization error is

εg = 1

2
√

2π

1√
α
+ 2H(a). (7.6)

If a < ac1, the system is attracted to the fixed pointR
(−)
1 according to the expansion on

the right-hand side of equation (7.3) aroundR = 0,

dR

dα
' 1

l

√
2

π
(1− 21) (7.7)

which is negative ifa < ac1. It is remarkable thatR(−)1 coincides withR∗ which gives
the global minimum ofE(R) for a < ac2 = 0.80. Therefore, fora < ac2, the present
Hebbian learning with queries achieves the best possible generalization error. In the range
ac2 < a < ac1, R = R

(−)
1 = R∗ is not the global minimum ofE(R) but is only a local

minimum. However, as seen in figure 13, over-training has disappeared in this region by
introducing queries.

The asymptotic behaviour fora < ac1 is found to be

εg = εopt− 16 log 2
√

2 log 2− a2

a2

[
1−Q

(
2,

1

2
log 2

)]
exp

[
−8 log 2√

πa

√
2 log 2− a2

√
α

]
(7.8)

whereQ(x, y) is the incomplete gamma function and the asymptotic valueεopt = E(R∗) is
optimal for a < ac1.

7.2. Optimized Hebbian learning with queries

Next we introduce the parameterg into the Hebbian learning with queries and optimizeg
so thatR goes to 1 as quickly as possible. As discussed in section 5, this strategy works
only for a > ac2 sinceR = 1 is not the optimal value ifa < ac2. Using the same technique
as in section 5, we find the optimal learning rate as

gopt = l

R

√
2

π

√
1− R2

{
1− 2 exp

(
− a2

1− R2

)}
. (7.9)

For the learnable case, the solution forR is

R =
√

1− c exp

(
−2α

π

)
(7.10)
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wherec is a constant. The generalization error decays to zero as

εg =
√
c

π
exp

(
−α
π

)
(7.11)

wherec is determined by the initial condition. This exponential decrease for the learnable
case is in agreement with [17] where the optimization of the type of equation (5.2) was used
together with queries. The asymptotic forms of the order parameterl and optimal learning
rategopt are

l = c′
√

1− c exp

(
−2α

π

)
(7.12)

gopt(α) = c′
√

2c

π
exp

(
−α
π

)
(7.13)

wherec′ is determined by the initial condition.
Next we investigate the case of finitea. Using the same asymptotic analysis as in the

learnable case, we obtain the asymptotic form of the generalization errorεg as

εg = 2H(a)+
√
c

π
exp

(
−α
π

)
. (7.14)

The limiting value 2H(a) is the theoretical lower bound fora > ac2 = 0.80. We therefore
have found a method of optimization to achieve the best possible generalization error with a
very fast, exponential, asymptotic approach fora > ac2. The present method of optimization
does not work appropriately fora < ac2 becauseR = 1, to which the present method is
designed to force the system, is not the best value ofR in this range ofa.

It is worth investigating whether the exponent of decay changes or not by using a
parameter-free optimal learning rate as in section 7. Ifa > ac1, only one fixed point
R = 1 exists. Therefore, thea-dependent term exp(−a2/(1− R2)) in equation (7.9) does
not affect the asymptotic analysis. We may therefore conclude that the asymptotic form of
generalization error does not change by optimal learning rate without the unknown parameter
a.

8. Avoiding over-training by a weight-decay term

In section 3 we showed that over-training appears for the unlearnable casea < ac1 by the
Hebbian learning. Ifa < ac1, the flow ofR goes to−1 for any initial condition passing
through the local minimum ofE(R) at R = R∗. Consequently, the generalization ability
of the student decreases as he learns excessively. In order to avoid this difficulty, we must
stop the dynamics on the way to the stateR = −1. For this purpose, we may use the
on-line dynamics with a weight-decay term or a forgetting term [13].

The on-line dynamics by the Hebbian rule is modified with the weight-decay term as

Jm+1 =
(

1− 3
N

)
Jm + Ta(v)x. (8.1)

The fixed point of the above dynamics is

R0 = 2(1− 21)√
π3+ 4(1− 21)2

. (8.2)



3814 Jun-ichi Inoue et al

Figure 14. The generalization error of Hebbian learning with a weight-decay term fora = 0.5.
Over-training disappears and the generalization error converges to its optimal value.

In order to get the optimal value, we chooseR0 so that it agrees withR∗ which gives
the global minimum ofE(R) for a < ac1. From this condition, we obtain the optimal3opt

as

3opt = 4a2(1− 21)2

π(2 log 2− a2)
. (8.3)

Using this3opt, we solve the differential equations numerically and plot the result in
figure 14 fora = 0.5(< ac1). We see that the over-training disappears and the generalization
error converges to the optimal value.

We next investigate how fast this convergence is achieved. For this purpose, we linearize
the differential equations around the fixed point to obtain

1− R ∼ (1− R0)

{
1+O

[
exp

(
−2a2(1− 21)2

(
π(2 log 2− a2)+ 4

π(2 log 2− a2)

)
α

)]}
. (8.4)

Here we warn that3opt in equation (8.3) depends ona which is unknown to the student.
Therefore, the result obtained in this section gives the theoretical upper bound of the
generalization ability.

9. Summary and discussion

We have analysed the problem of on-line learning by the perceptron and Hebbian algorithms.
For the unlearnable case, the generalization error decays exponentially to a finite value
E(R0) with R0 = 1− 21 in the case of perceptron learning. For the Hebbian learning, the
generalization error decays to 2H(a), the best possible value, fora > ac1 and to 1−2H(a)
for a < ac1, both proportionally toα−1/2. In this latter parameter regiona < ac1, we
observed the phenomenon of over-training.
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We also investigated the learning under output noise. For the learnable case of the
perceptron algorithm, the order parametersR and l are attracted towards a fixed point
(R0, l0) asymptotically with an exponential law. As a result, the generalization error decays
to a finite value exponentially. On the other hand, for the unlearnable case of perceptron
learning, the generalization error decays exponentially to a finite valueE((1−21)(1−2λ)).
For the Hebbian learning, the generalization error decays to 2H(a) in proportion to 1/

√
α

for a > ac1 and to 1− 2H(a) also in proportion to 1/
√
α for a < ac1.

We introduced the learning rateg(α) in on-line dynamics and optimized it to maximize
dR/dα. Using this treatment we obtained a closed form trajectory ofR and l. The
generalization ability of the student has been shown to increase fora > ac2 = 0.80 in
the case of the perceptron learning algorithm. For the unlearnable case, the generalization
error decays to the best possible value 2H(a) in proportion to 1/

√
α. For Hebbian learning,

the asymptotic generalization ability did not change by this optimization procedure.
Unfortunately, in the parameter rangea < ac2, we found it impossible to obtain an

optimal performance for the perceptron learning within our procedure of optimization. To
overcome this difficulty, we investigated the on-line dynamics with a weight-decay term
for the Hebbian learning. Using this method, we could eliminate the over-training, and the
generalization error converged to the optimal value exponentially.

We also introduced a new learning rate independent of the unknown parametera.
We assumedg(α) = kl/α and optimizedk so that the generalization error decays to the
minimum value as quickly as possible. As a result, for the unlearnable case ofa > ac1 the
prefactor was somewhat improved although the exponent of decay did not change.

The Hebbian learning with queries was also investigated. If the student is trained by
the Hebbian algorithm using inputs on the decision boundary, his generalization ability is
improved except in the rangeac2 < a < ac1. This is a highly non-trivial result because
this choice of query works well for the unlearnable case where the student does not know
the structure of the teacher. We next introduced the optimal learning rate in the on-line
Hebbian learning with queries and obtained a very fast convergence of the generalization
error. Fora > ac1, the generalization error converges to its optimal value exponentially.

We have observed exponential decays to limiting values in various situations of
unlearnable rules. This fast convergence may originate in the large size of asymptotic
space; if the limiting value ofR is unity, only a single point in theJ -space,J = J0, is
the correct destination of learning dynamics, a very difficult task. If, on the other hand,R

approachesR0(< 1), there are a continuous number of allowed student vectors, and to find
one of these should be a relatively easy process, leading to exponential convergence.
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